Excited-state relaxation in PbSe quantum dots.

نویسندگان

  • Joonhee M An
  • Marco Califano
  • Alberto Franceschetti
  • Alex Zunger
چکیده

In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (< or =1 ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7 ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb(2046)Se(2117) and Pb(260)Se(249) quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P-->S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P-->S intraband decay time scale without the need to invoke any exotic relaxation mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Photoluminescence from Embedded PbSe Colloidal Quantum Dots in Silicon-Based Random Photonic Crystal Microcavities

The experimental observation of enhanced photoluminescence from high-Q silicon-based random photonic crystal microcavities embedded with PbSe colloidal quantum dots is being reported. The emission is optically excited at room temperature by a continuous-wave Ti-sapphire laser and exhibits randomly distributed localized modes with a minimum spectral linewidth of 4 nm at 1.5 μm wavelength.

متن کامل

Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser

In this paper, the nonlinear rate equations governing a quantum dot laser isused to simulate the transient as well as the steady-state behaviors of the laser.Computation results show that the rate equations are capable of simulating true behaviorof a quantum dot laser. Then, the pump rates of the rate equations (which show indirectelectrical pumping of the quantum dots through a wetting layer) ...

متن کامل

Electron Relaxation in Colloidal InP Quantum Dots with Photogenerated Excitons or Chemically Injected Electrons

Femtosecond transient absorption spectroscopy has been used to characterize charge carrier relaxation from the second excited state (1P) to the first excited state (1S) in colloidal indium phosphide (InP) quantum dots (QDs). A three pulse experiment consisting of a visible pump, infrared pump, and white light probe was used to characterize the relaxation of photogenerated excitons, and the role...

متن کامل

Intensity-dependent bleaching relaxation in lead salt quantum dots

Bleaching relaxation in lead salt (PbS) quantum dots (QDs) of various sizes and under different pump intensities has been studied. The observed bleaching relaxation features (particularly, shortening of the bleaching relaxation times with a decrease in the QD size and an increase of the pump-light intensity) are explained in the context of the proposed spectroscopic model. The model takes into ...

متن کامل

Excited-state relaxations and Franck-Condon shift in Si quantum dots

Excited-state relaxations in molecules are responsible for a red shift of the absorption peak with respect to the emission peak (Franck-Condon shift). The magnitude of this shift in semiconductor quantum dots is still unknown. Here we report first-principle calculations of excited-state relaxations in small (diameter ≤ 2.2 nm) Si nanocrystals, showing that the Franck-Condon shift is surprisingl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 16  شماره 

صفحات  -

تاریخ انتشار 2008